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Background
• Within each disease model, patients move through health states as the disease progresses, each with different signs, 

symptoms, mortality, morbidity, burden, medical needs, and costs

• Multi-state Markov models are commonly used to describe the long-term disease progression through various health 

states over time in discrete or continuous scales. Examples include decline in lung function during chronic obstructive 

pulmonary disease, decline in glomerular filtration rates during chronic kidney disease,1 and change in HbA1c levels 

over time in diabetes.2,3 Dynamics of progression are often represented via transition probability matrices (TPMs)

• Multi-state Markov models have also been used by clinicians to guide treatment decisions.4,5 Examples include 

optimizing initiation of statins to control lipid levels for lowering the risk of coronary heart disease and stroke in 

patients with type 2 diabetes,5,6 or optimizing the management of blood pressure and cholesterol to improve quality of 

life7

• Limited follow-up data from clinical trials warrants the use of extrapolation methods for lifetime disease models; 

however, unlike time-to-event outcomes there is a gap in the literature for advanced analytical methods to extrapolate 

data available in the form of discrete-time TPMs. Long-term TPMs are often cited to be uncertain, with common 

assumptions such as holding TPMs constant or no state occupancy changes.

• Continuous-time hidden Markov chain is a suitable alternative to discrete-time Markov chain for modelling long-term 

disease progression when changes in disease occur irregularly. With the advent of modern optimization tools that can 

tackle complex maximum likelihood optimization problems and elicit the underlying transition rate matrix of 

continuous-time hidden Markov chains, limited data in discrete-time can be easily projected for long-run-term quality 

adjusted life years (QALY) and cost evaluations8,9,10 

1. Hoogendoorn M, et al. Value Health 2011;14(8):1039-1047. 2. Zhang Y, et al. Diabetes Care. 2014;37(5):1338-1345. 3. Johnson SR, et al. Diabetes Care 2019;42(1):69-76. 4. Denton BT, et al. Med 
Decis Making 2009;29(3):351-367. 5. Kurt M, et al. IIE Trans Healthc Syst Eng 2011;1(1):49-65. 6. Mason JE, et al. Med Decis Making 2012;32(1):154-166. 7. Mason JE, et al. Eur J Oper Res 
2014;233(3):727-738. 8. Bladt M, et al. J R Stat Soc Series B Stat Methodol 2005;67(3):395-410. 9. Liu YY, et al. Adv Neural Inf Process Syst 2015;28:3599-3607. 10. Liu Y-Y, et al. arXiv
2021:2110.13998.
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Objectives

• The objective of this study was to 

— Devise a continuous-time Markov chain (CTMC) algorithm to estimate transition rates and 

corresponding state occupancy measures using limited aggregated level data

— Compare the long-term predictive performance of the CTMC approach to a traditional 

approach which assumes no transitions among health states after the follow-up
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Method: CTMC algorithm
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according to Liu et al. 20159
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Illustrative case study: A hypothetical 4-state model

• An internal validation was conducted to first establish the convergence of the CTMC approach 

and tested its predictive ability using synthetic data sets. Experiments showed <1% prediction 

error

• The CTMC algorithm was applied to a hypothetical disease setting, severity of which was 

classified by three health states excluding death. Transitions from each of the 3 health states 

were permissible to any health state (including death)

Health State 1 Health State 2

Health State 3

Death
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Synthetic disease data generation

• Simulated sojourn times in each state and frequency of movements across different health 

states were used in a maximum likelihood estimation framework to elicit the generator matrix 

of an underlying CTMC which can be run forward to predict the proportion of patients in each 

health state beyond the trial follow-up

• The process was simulated for 1,000 times to sample from TPMs’ distribution. For each 

simulation, the posterior state probabilities were estimated using the CTMC approach to 

calculate the underlying generator matrix. The mean generator matrix and confidence intervals 

(CI) of all elements were then calculated across all simulations to account for the uncertainty in 

the simulation process

Generate diagonal elements of 

TPMs based on departure times 

from each state

Simulate non-diagonal elements 

for sicker states

Use remaining 

probabilities for each row 

of TPMs

TPMs, transition probability matrices. 
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Other model parameters

• For the calculation of long-term health outcomes, the following assumptions 

were made:

— 60% males with mean age of 60 years and 40-year time horizon

— Annual rates of discount (cost and effects) as well as treatment discontinuation rates were 

both 3%; utilities were assumed to be 0.9, 0.8, and 0.7 for states 1, 2, and 3, respectively

— Patients in state 1 were assumed to follow age- and sex-adjusted US background mortality 

rates. Compared to state 1, relative mortality risk was 3 and 9 in state 2 and state 3, 

respectively
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Methods: Application of CTMC algorithm

Scenario State 1 State 2 State 3

1 (Base-case) 0.00% 75.00% 25.00%

2 75.00% 0.00% 25.00%

3 75.00% 25.00% 0.00%

4 100.00% 0.00% 0.00%

5 0.00% 100.00% 0.00%

6 0.00% 0.00% 100.00%

7 33.34% 33.34% 33.34%

Analyses were focused generally on scenarios with a higher proportion of patients starting in healthier state (i.e., 3:1), along with testing of other scenarios of equal distribution across different 
states and extreme cases (i.e., 100% in one state)

* Shorter sojourn time setting: Diagonal entries of the TPMs were assumed to be lower than those in the base-case setting.

Longer sojourn time setting: Diagonal entries of the TPMs were assumed to be higher than those in the base-case setting. 

• Scenario analyses on different initial state distributions were conducted

• Sensitivity analyses were conducted to explore assumptions on simulated 

sojourn times for synthetic data*
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Results: Average view of TPMs

Values show the average of observed probabilities in TPMs across all time epochs for base case (week 0 to week 30).
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Results: Average view of generator matrices

Values in the cells show the mean estimated rates based on CTMC approach based on 1000 simulations.
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Results: State occupancy projections

• Projected conditional state occupancies for Scenario 1 were compared between 

the CTMC and the traditional approach

The traditional approach was discrete-time Markov chain, which assumes no transitions among health states after the follow-up.
Grey shaded areas represent 95% CIs around conditional state occupancies for the CTMC approach.

CTMC Approach          Traditional Approach          Observed Data Points X
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Results: LY gain for CTMC vs. traditional approach (1/2)

Scenarios for initial distribution of 
patients across states

Settings for the generation of 
diagonal entries of TPMs

Long-term LY gain

(treatment vs. placebo)

CTMC

(95% CI)
Traditional 
Approach

CTMC vs. 
Traditional 
Approach

(95% CI)

Scenario 1 (0%, 75%, 25%)

Base-case 3.04 (2.43,3.93) 0.99 2.05 (1.44,2.94)

Shorter sojourn times† 2.98 (2.04,3.77) 2.63 0.35 (-0.59,1.14)

Longer sojourn times‡ 1.14 (0.54,2.11) 0.67 0.47 (-0.13,1.44)

Scenario 2 (75%, 0%, 25%)

Base-case 0.86 (0.11,1.60) 0.52 0.34 (-0.41,1.08)

Shorter sojourn times† 0.79 (0.36,1.54) 0.72 0.07 (-0.36,0.82)

Longer sojourn times‡ 0.54 (0.12,1.17) 0.32 0.22 (-0.20,0.85)

Scenario 3 (75%, 25%, 0%)

Base-case 0.76 (0.26,1.67) 0.42 0.34 (-0.16,1.25)

Shorter sojourn times† 0.77 (0.30,1.63) 0.61 0.09 (-0.31,1.02)

Longer sojourn times‡ 0.55 (0.22,1.43) 0.21 0.34 (0.01,1.22)

Scenario 4 (100%, 0%, 0%)

Base-case 1.56 (0.71,3.02) 0.88 0.68 (-0.17,2.14)

Shorter sojourn times† 1.22 (0.69,2.55) 0.92 0.30 (-0.30,1.63)

Longer sojourn times‡ 1.03 (0.51,2.14) 0.67 0.36 (-0.16,1.47)

†Diagonal entries of the TPMs in the “shorter sojourn time setting” were assumed to be lower than those in the base-case setting. ‡Diagonal entries of the TPMs in the “longer sojourn time setting” 
were assumed to be higher than those in the base-case setting. 

Values highlighted in green represents settings where LY differential is estimated to be more significant.
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Results: LY gain for CTMC vs. traditional approach (2/2)

Scenarios for initial distribution of 
patients across states

Settings for the generation of 
diagonal entries of TPMs

Long-term LY gain

(treatment vs. placebo)

CTMC

(95% CI)
Traditional 
Approach

CTMC vs. 
Traditional 
Approach

(95% CI)

Scenario 5 (0%, 100%, 0%)

Base-case 2.99 (2.29,3.70) 0.52 2.47 (1.77,3.18)

Shorter sojourn times† 2.95 (1.89,3.42) 0.32 2.63 (1.57,3.10)

Longer sojourn times‡ 1.30 (0.68,2.86) 0.62 0.68 (0.06,2.24)

Scenario 6 (0%, 0%, 100%)

Base-case 3.25 (1.21,4.89) 2.36 0.89 (-1.15,2.53)

Shorter sojourn times† 3.01 (1.01,4.42) 2.53 0.48 (-1.52,1.89)

Longer sojourn times‡ 2.40 (1.23,3.87) 1.92 0.50 (-0.69,1.95)

Scenario 7 (33.34%, 33.34%, 33.34%)

Base-case 2.90 (1.44,3.97) 1.31 1.59 (0.13,2.66)

Shorter sojourn times† 2.53 (1.14,3.65) 1.90 0.63 (-0.76,1.75)

Longer sojourn times‡ 1.2 (0.44,2.36) 0.84 0.36 (-0.40,1.52)

†Diagonal entries of the TPMs in the “shorter sojourn time setting” were assumed to be lower than those in the base-case setting. ‡Diagonal entries of the TPMs in the “longer sojourn time setting” 
were assumed to be higher than those in the base-case setting. 

Values highlighted in green represents settings where LY differential is estimated to be more significant.
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Results: QALY gain for CTMC vs. traditional approach (1/2)

Scenarios for initial distribution of 
patients across states

Settings for the generation of 
diagonal entries of TPMs

Long-term QALY gain

(treatment vs. placebo)

CTMC

(95% CI)
Traditional 
Approach

CTMC vs. 
Traditional 
Approach

(95% CI)

Scenario 1 (0%, 75%, 25%)

Base-case 3.20 (2.44,3.96) 1.38 1.82 (1.06,2.58)

Shorter sojourn times† 3.14 (2.12,3.72) 3.01 0.13 (-0.89,0.71)

Longer sojourn times‡ 1.03 (0.13,2.27) 0.75 0.28 (-0.62,1.52)

Scenario 2 (75%, 0%, 25%)

Base-case 1.33 (0.61,2.55) 0.74 0.59 (-0.13,1.81)

Shorter sojourn times† 0.96 (0.21,1.98) 0.87 0.09 (-0.66,1.11)

Longer sojourn times‡ 0.71 (0.13,1.69) 0.48 0.23 (-0.35,1.21)

Scenario 3 (75%, 25%, 0%)

Base-case 1.03 (0.43,2.59) 0.61 0.42 (-0.18,1.98)

Shorter sojourn times† 0.97 (0.31,1.89) 0.84 0.13 (-0.53,1.05)

Longer sojourn times‡ 0.69 (0.22,1.44) 0.41 0.28 (-0.19,1.03)

Scenario 4 (100%, 0%, 0%)

Base-case 1.76 (0.78,3.32) 1.03 0.73 (-0.25,2.29)

Shorter sojourn times† 1.42 (0.67,2.68) 1.14 0.28 (-0.47,1.53)

Longer sojourn times‡ 1.20 (0.58,2.51) 0.78 0.42 (-0.20,1.73)

†Diagonal entries of the TPMs in the “shorter sojourn time setting” were assumed to be lower than those in the base-case setting. ‡Diagonal entries of the TPMs in the “longer sojourn time setting” 
were assumed to be higher than those in the base-case setting. 

Values highlighted in green represents settings where QALY differential is estimated to be more significant.
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Results: QALY gain for CTMC vs. traditional approach (2/2)

Scenarios for initial distribution of 
patients across states

Settings for the generation of 
diagonal entries of TPMs

Long-term QALY gain

(treatment vs. placebo)

CTMC

(95% CI)
Traditional 
Approach

CTMC vs. 
Traditional 
Approach

(95% CI)

Scenario 5 (0%, 100%, 0%)

Base-case 3.16 (2.64,3.70) 0.93 2.23 (1.71,2.77)

Shorter sojourn times† 3.12 (2.52,3.80) 0.42 2.70 (2.10,3.38)

Longer sojourn times‡ 1.19 (0.55,2.26) 0.71 0.48 (-0.16,1.55)

Scenario 6 (0%, 0%, 100%)

Base-case 3.57 (1.52,4.43) 2.66 0.91 (-1.14,1.77)

Shorter sojourn times† 3.07 (1.22,4.31) 2.88 0.19 (-1.66,1.43)

Longer sojourn times‡ 2.7 (1.01,3.11) 2.2 0.50 (-1.19,0.91)

Scenario 7 (33.34%, 33.34%, 33.34%)

Base-case 3.1 (1.52,4.03) 1.96 1.14 (-0.44,2.07)

Shorter sojourn times† 2.8 (1.33,3.78) 2.30 0.50 (-0.97,1.48)

Longer sojourn times‡ 1.4 (0.77,2.49) 0.98 0.42 (-0.21,1.51)

†Diagonal entries of the TPMs in the “shorter sojourn time setting” were assumed to be lower than those in the base-case setting. ‡Diagonal entries of the TPMs in the “longer sojourn time setting” 
were assumed to be higher than those in the base-case setting. 

Values highlighted in green represents settings where QALY differential is estimated to be more significant.
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Conclusions

• Sensitivity analyses confirmed the robustness of the results. Increase in LY and QALY gains by the 

CTMC approach was sustained across various scenarios

• In multiple settings with respect to initial distribution of patients across states and construction 

of synthetic data, the traditional approach can underestimate the long-term LY and QALY gains 

by treatment compared to the CTMC approach. Based on the calculated CIs, most of the 

differentials in LY and QALY gains between the two approaches were statistically non-significant

• Our study emphasized the need of a structurally rigorous approach for the extrapolation of 

disease progression data encapsulated in TPMs

• The CTMC algorithm was developed based on state-of-the-art optimization methodologies to 

estimate the underlying continuous generator matrix. This approach is flexible and scalable to 

larger Markov models

• Unlike some recent studies,11 our CTMC approach does not quantify the impact of confounders 

such as comorbidity on long-term predictions

• Future studies can leverage external long-term follow-up data for validation of state occupancy 

projections for the CTMC approach versus other traditional approaches

11. Oflaz Z, et al. Stat Methods Med Res 2023 Apr;32(4):829-849. doi: 10.1177/09622802231155100.



Extrapolating discrete-time disease evolution data in limited series of transition probability matrices

Acknowledgments

• All authors contributed to and approved the presentation; writing assistance 

was provided by Evidinno Outcomes Research Inc., funded by Bristol Myers 

Squibb



Thank you!

Presenter Contact Information

Murat Kurt: Murat.Kurt@bms.com

Extrapolating discrete-time disease evolution data in limited series of transition probability matrices


	Default Section
	Slide 1: Extrapolating discrete-time disease evolution data in limited series of transition probability matrices: A continuous-time Markov chain approach
	Slide 2: Disclosures

	Background & objectives
	Slide 3: Background
	Slide 4: Objectives

	Methods
	Slide 5: Method: CTMC algorithm
	Slide 6: Illustrative case study: A hypothetical 4-state model
	Slide 7: Synthetic disease data generation
	Slide 8: Other model parameters
	Slide 9: Methods: Application of CTMC algorithm

	Results
	Slide 10: Results: Average view of TPMs
	Slide 11: Results: Average view of generator matrices
	Slide 12: Results: State occupancy projections
	Slide 13: Results: LY gain for CTMC vs. traditional approach (1/2)
	Slide 14: Results: LY gain for CTMC vs. traditional approach (2/2)
	Slide 15: Results: QALY gain for CTMC vs. traditional approach (1/2)
	Slide 16: Results: QALY gain for CTMC vs. traditional approach (2/2)
	Slide 17: Conclusions
	Slide 18: Acknowledgments
	Slide 19: Thank you!


