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The integration of AI into HEOR is transforming the process of how healthcare stakeholders assess value

with the potential to optimize resource allocation to improve patient outcomes in a more timely manner.

Traditionally, HEOR has relied on complex statistical models that incorporate clinical and real world data

to conduct economic evaluations to inform healthcare decision-making. However, the rapid

advancement of AI that incorporates machine learning (ML), natural language processing (NLP), and

predictive analytics offers opportunities to enhance data-driven insights, improve efficiency, and refine

decision-making processes.

AI enables HEOR professionals to process vast amounts of structured and unstructured healthcare data

more efficiently, uncover hidden patterns, and generate predictive models that support cost-

effectiveness analyses and comparative effectiveness research. From accelerating systematic literature

reviews (SLRs) to improving disease modeling and forecasting, AI-driven methodologies are redefining

how evidence is generated, analyzed, and applied in healthcare decision-making.1
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1) Literature Reviews: Large language models

(LLMs) are transforming the landscape of SLRs

and meta-analyses by augmenting critical

research tasks rather than replacing human

expertise.  These AI-driven models assist in search

strategy development by suggesting MeSH terms

and keywords for databases like PubMed.  Recent

studies have explored their effectiveness in

abstract and full-text screening, with GPT-4

achieving performance levels comparable to

human reviewers when provided with well-

structured prompts in a fraction of the time.

Additionally, LLMs have been evaluated for their

ability to explain exclusion reasoning  and assess

the risk of bias using tools like the Cochrane

Collaboration’s risk assessment framework.

Moreover, LLMs have been tested for data

extraction, with studies reporting high accuracy in

replicating extracted data.  
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2) RWE Evidence Generation: Real world

evidence (RWE) generation can be significantly

enhanced with generative AI by streamlining data

extraction, reducing variability, and improving

consistency in HTA processes. LLMs facilitate

efficient extraction of critical information from

unstructured electronic health record (EHR) data,

such as radiology reports and physician notes

Domain specific LLMs, such as GatorTron,

GatorTronGPT, and Me LLaMA, which are trained

using large clinical texts, have been shown to

improve the accuracy of outputs over human

appraisers.  Techniques like “few-shot learning”

further enhance AI’s ability to accurately extract

relevant variables from complex clinical texts.

Additionally, generative AI is being adapted to

analyze various real-world data formats, including

medical imaging, broadening its potential

applications in evidence generation.
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3. Predictive Modeling: Generative AI has the potential to transform predictive modeling by using

advanced algorithms to process large datasets and forecast outcomes with high precision. By

analyzing data from sources like EHRs, genetic information, and imaging studies, AI-powered models

can accurately predict patient risks, optimize treatment plans, and improve resource allocation.

Hospitals use these tools to identify patients at risk of chronic conditions or readmissions, enabling

early interventions and tailored care strategies.  Deep learning techniques have shown particularly

high diagnostic accuracy in areas such as medical imaging, outperforming traditional methods in

detecting diseases like diabetic retinopathy and lung cancer.
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4. Comparative Effectiveness: Comparative effectiveness research can be streamlined with the

support of generative AI by enhancing data analysis, reducing bias, and improving evidence synthesis

quality. Advanced ML algorithms efficiently process vast amounts of real-world data from claims

databases and clinical trials to identify patterns and compare treatment outcomes across diverse

patient populations.  Recent studies have shown that AI-powered clinical decision support systems

demonstrate high concordance with physician recommendations, potentially improving the accuracy

of comparative analyses.  NLP techniques enable AI to extract relevant information from

unstructured medical texts, enhancing the comprehensiveness of comparative studies.

Furthermore, AI's capacity to simulate and evaluate numerous potential treatments optimizes

effectiveness prediction against various diseases, leading to more robust comparative assessments.
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5. Health Economic Modelling: Various stages of health economic model development can be

supported with generative AI, including conceptualization, parameterization, implementation, and

validation.  Studies have demonstrated that foundation models such as GPT-4 and Bing Chat can

assist in building Markov models and partition survival models, with researchers employing advanced

prompt engineering techniques like chain-of-thought prompting to improve accuracy.

Nevertheless while AI tools can generate model structures and code, human intervention remains

crucial to ensure validity, particularly in complex models. Some studies, such as Ayer et al. 2023,

have demonstrated the feasibility of fully automating simpler health economic models, though further

research is required to extend this capability to more sophisticated frameworks. Additionally, AI-driven

automation could enhance structural uncertainty analysis, streamlining an otherwise resource-

intensive process.
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Scientific Validity and Reliability: Ensuring the scientific validity and reliability of generative AI tools is
crucial, particularly as they are integrated into research workflows. While these models can augment human
expertise, researchers remain responsible for accuracy and reporting. LLMs trained on vast publicly available
datasets, may introduce errors, especially in specialized fields like healthcare,  necessitating rigorous
validation. A well-documented issue is the generation of "hallucinations," where models produce incorrect or
fabricated information due to their statistical nature of learning.  Several strategies can mitigate these risks,
including prompt engineering (e.g., chain-of-thought prompting,  few-shot learning ), retrieval-augmented
generation,  and fine-tuning with domain-specific data.  Reproducibility also presents a challenge, as model
outputs can vary due to user expertise, prompt quality, and inherent AI variability. Researchers have proposed
frameworks to enhance reproducibility, such as repeated trial runs  and standardized reporting methods.  
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Ensuring Accuracy in AI Applications
Transparency is a critical component of generative AI's integration into scientific research workflows.
It is a key focus of FDA regulatory guidance, as clear information about AI systems is essential for the
agency to effectively evaluate AI-enabled medical devices and drug development tools. Ensuring
transparency across all aspects of generative AI—from algorithmic design to output generation—is
essential for enabling reproducibility, and mitigating biases which ultimately lead to fostering trust and
increasing acceptance and more widespread use. This principle underpins the discussions on
scientific validity and reliability, algorithmic fairness, and regulatory and ethical considerations.

Algorithmic Bias and Fairness: Bias can arise from multiple sources, including systemic bias due to
historical underrepresentation of marginalized groups in training data,  as well as computational and
statistical biases stemming from unrepresentative samples.  Exclusion of specific populations during
data collection, model training, or evaluation further compounds these risks.  To address these challenges,
researchers have proposed various mitigation strategies. Distributional approaches focus on improving data
representativeness through techniques such as data augmentation, perturbation, reweighting, and
synthetic data generation.  Federated learning, which enables models to be trained across multiple
institutions without direct data sharing, offers potential for reducing localized biases.  Algorithmic
approaches, including adversarial learning and loss-based methods, adjust model parameters to penalize
biased predictions.  Ongoing research continues to explore and refine these techniques to enhance
fairness in AI-driven applications.
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 Regulatory and Ethical Considerations: Regulatory and ethical considerations for generative AI in
biomedical research are evolving, but existing data privacy laws, such as Health Insurance Portability and
Accountability Act in the United States  and General Data Protection Regulation in the European Union,
remain relevant. Generative AI models need vast training data, but using data with protected health
information poses reidentification risks, as absolute deidentification is not attainable.  The use of
patient-level data in commercial LLMs presents additional privacy risks, while open-source models require
stringent data security measures. Strategies such as synthetic data generation  and encrypted
computations  are being explored to enhance privacy protections. Ethical concerns surrounding AI extend
beyond privacy. They include issues such as ensuring informed consent for AI-driven research, addressing
the risk of AI-generated misinformation influencing health decisions, and improving transparency in how AI
models make decisions. .  Studies, such as Gichoya et al. 2023, have demonstrated that AI models can
detect sensitive attributes like race from medical images, raising concerns about unintended biases and
their impact on health equity.  As generative AI continues to advance, ongoing regulatory oversight and
ethical considerations will be critical to ensuring responsible implementation.
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The integration of generative AI into HEOR presents an opportunity to enhance efficiency,

accuracy, and consistency across literature reviews, RWE generation, predictive modelling,

comparative effectiveness, and health economic modeling. However, realizing its full potential

requires a balanced approach that prioritizes scientific validity, fairness, and ethical

considerations.

To ensure accuracy and reliability, researchers must employ best practices such as

responsible engineering, retrieval-augmented generation, and domain-specific fine-

tuning. Addressing bias and fairness necessitates proactive strategies, including data

augmentation, federated learning, and algorithmic adjustments to mitigate disparities in

AI-driven analyses. Regulatory and ethical considerations remain paramount, particularly

regarding data privacy, informed consent, and transparency in decision-making

processes.

AI will not replace human expertise but will continue to serve as a powerful tool to

support researchers, policymakers, and industry stakeholders. Collaboration among

multidisciplinary experts including AI developers, clinicians, and health economists,

will be crucial in developing guidelines that ensure responsible AI use. Continuous

refinement of AI models, integration with research best practices, and adherence to evolving

regulatory frameworks will help maximize benefits while safeguarding scientific integrity and

equity in healthcare decision-making.

Balancing Efficiency and Accuracy

Overall, the need for balancing efficiency and accuracy in scientific research using generative AI is
paramount, and requires human interaction to appropriately guide development and use of these
tools. While AI can enhance efficiency and standardization, ensuring validity, reproducibility, and
transparency requires careful human oversight, methodological rigor, and collaboration across
stakeholders. Ensuring fairness requires proactive strategies to address biases in data and
model design, integrating inclusive datasets and algorithmic safeguards. Ethical considerations,
regulatory oversight, and privacy protections are crucial to fostering trust and ensuring equitable
benefits across diverse populations.

Ongoing improvements in model reliability, explainability, and integration into research best practices
will be key to leveraging AI responsibly while maintaining scientific integrity.
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The Path Forward with AI-enabled RWE in HEOR
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