Artificial Intelligence Integration in Health Technology Assessments: A Review of Global Policies and Practices

Eon Ting¹, Matthew Badin¹, Nishu Gaind², Kimberly Hofer², Mir-Masoud Pourrahmat², Luka Ivkovic², Thomas Haugli-Stephens³, Johanna Jacob⁴, Mir Sohail Fazeli²

¹ AstraZeneca, Mississauga, Ontario, Canada; ² Evidinno Outcomes Research Inc, Vancouver, BC, Canada; ³ AstraZeneca AS, Oslo, Norway; ⁴ AstraZeneca AB, Stockholm, Sweden

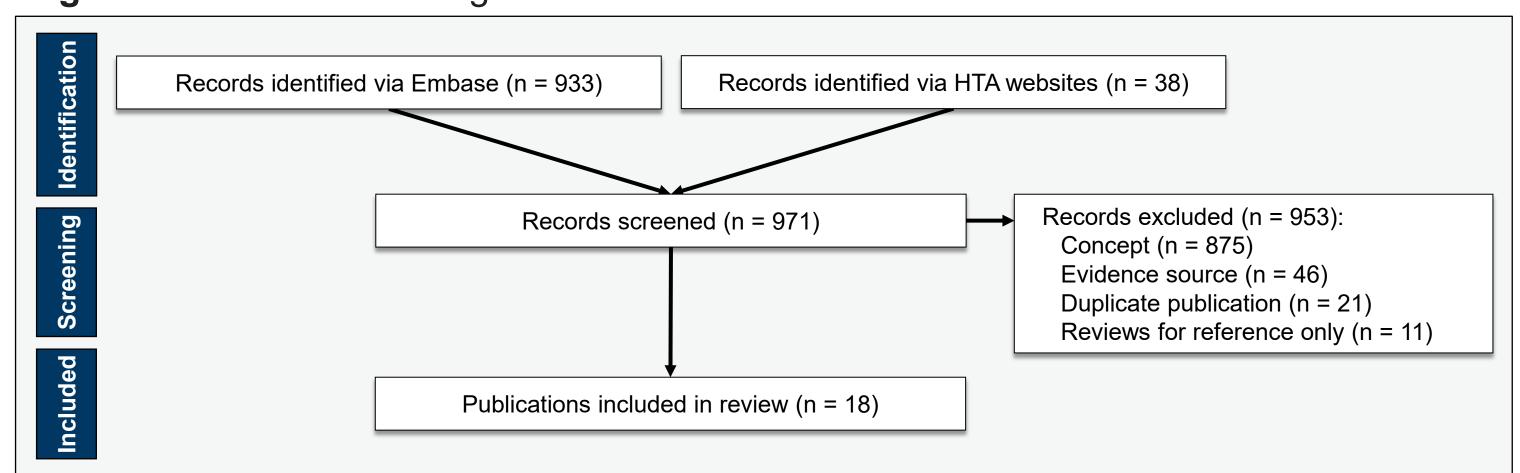
Introduction

- Artificial intelligence (AI) is revolutionizing healthcare, including drug development, clinical decisions, and health technology assessments (HTAs)
- In HTAs, AI has potential to streamline processes, enhance evidence quality, and align strategies with the evolving expectations of HTA agencies¹
- However, regulatory inconsistencies, methodological differences, and concerns of data quality pose integration challenges²

Objective

• To assess and synthesize the published literature on the use and acceptance of AI by HTA agencies, both for submissions by sponsors and for internal purposes within HTA agencies

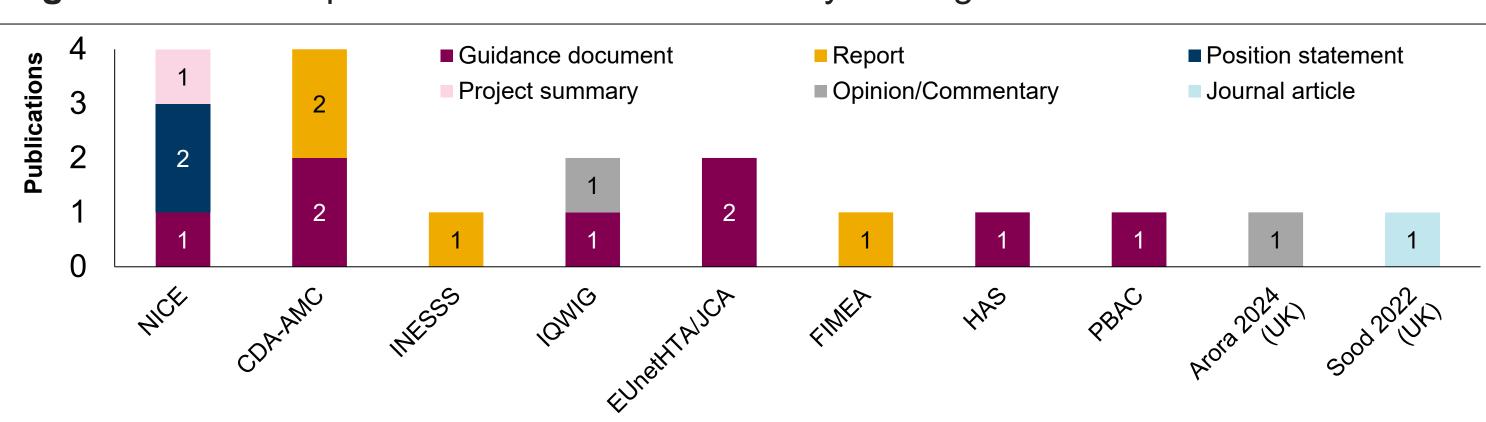
Methods


- Comprehensive review of HTA websites for guidance documents, policy statements, and opinions on use of AI and machine learning (ML) conducted for HTA agencies in Canada, Europe, and Asia-Pacific
- Supplementary search of Embase, bibliographies of previous reviews, and gray literature was completed on December 11, 2024
- Publications on AI/ML approaches recommended/accepted/used by HTA agencies across therapeutic area were identified using PCC framework (Population, Concept, Context)³

Results

Publication Selection

- Review included 18 publications (n; **Figure 1**): 16 from HTA agency websites and 2 from Embase
- Embase articles included a NICE commentary and a paper from NICE on AI/ML in screening


Figure 1. PRISMA flow diagram

Publication Characteristics

• Few HTA agencies provided AI/ML guidance (Figure 2), mainly from NICE (UK)4-7 and CDA-AMC (Canada)⁸⁻¹¹ (n=4 each), followed by IQWiG (Germany),^{12,13} and EUnetHTA/JCA (Europe; n=2 each)^{14,15}

Figure 2. Included publications on use of AI/ML by HTA agencies

AI/ML Use and HTA Thresholds

 Al-enabled tools for publication screening from INESSS,²² NICE,²¹ and EUnetHTA¹⁵ tended to favor high sensitivity thresholds (>95% sensitivity in correctly identifying all relevant articles), while specificity was lower (INESSS: ≥30% specificity in correctly excluding irrelevant articles)

- INESSS tested 3 strategies by using 4 INESSS publications containing literature reviews (**Table 1**)²²

HTA agencies are beginning to acknowledge Al/ML in submissions, particularly for literature reviews and evidence synthesis (n = 8), economic modeling (n = 3), real-world evidence generation (n = 6) and indirect treatment comparison (n = 1); Some HTA agencies are adopting Al/ML for internal use

For Internal Purposes **Evidence Generation**

Position statement prioritizes staff upskilling and Al advancement in HTAs⁵ NICE statement of intent outlines actions: learnings from Al projects, task automation, cybersecurity, ethical adherence, and Al literacy training⁶

★ CDA-AMC

Reported internal evaluation instrument on AI search tools for evidence synthesis²⁰

* INESSS (Quebec)

Evaluated GPT-4 for literature screening, finding a ranking strategy with 100% sensitivity and reasonable specificity²²

FIMEA

Internal RWD/AI/ML network aims to promote the systematic sharing of topical issues and competence in these areas¹⁸

Sood et al. 2022 Summarized NICE's AI tools for COVID-19 surveillance: EPPI-4 for study screening and rulebased pattern matching for sub-topic categorization, enhancing efficiency and accuracy²¹

Literature Review and

NICE NICE

Stated use of ML classifier such as Cochrane randomized controlled trial (RCT) classifier priority screening tool for systematic reviews⁴ Position statement highlights ML and large language models (LLMs) for evidence identification, screening, and visualization, with potential for data extraction and synthesis⁵ **IQWiG**

> Validated study filters (e.g., for RCTs and systematic reviews) or ML classifiers such as RCT classifiers can be used if available¹³

Al may automate searches and data extraction in systematic reviews¹⁰

EUnetHTA

Stated using validated study filters (≥95% sensitivity) for RCT searches. RobotSearch and Cochrane's RCT classifiers are suitable tools¹⁵

HAS and PBAC

Referred Cochrane Handbook, which highlights AI tools like RCT Classifier and Screen4Me for streamlining study selection of RCTs^{16,17}

Real World Evidence

Position statement emphasized detailed AI reporting for RWD extraction⁵

Commentary outlined that in RWD analysis, NLP could be used to analyze unstructured data, or AI could assist with multimodal data integration¹⁹

* CDA-AMC

Guidelines suggested including comments on ML methods in RWE studies, but stakeholders opted to leave the method

choice to investigators^{8,9}

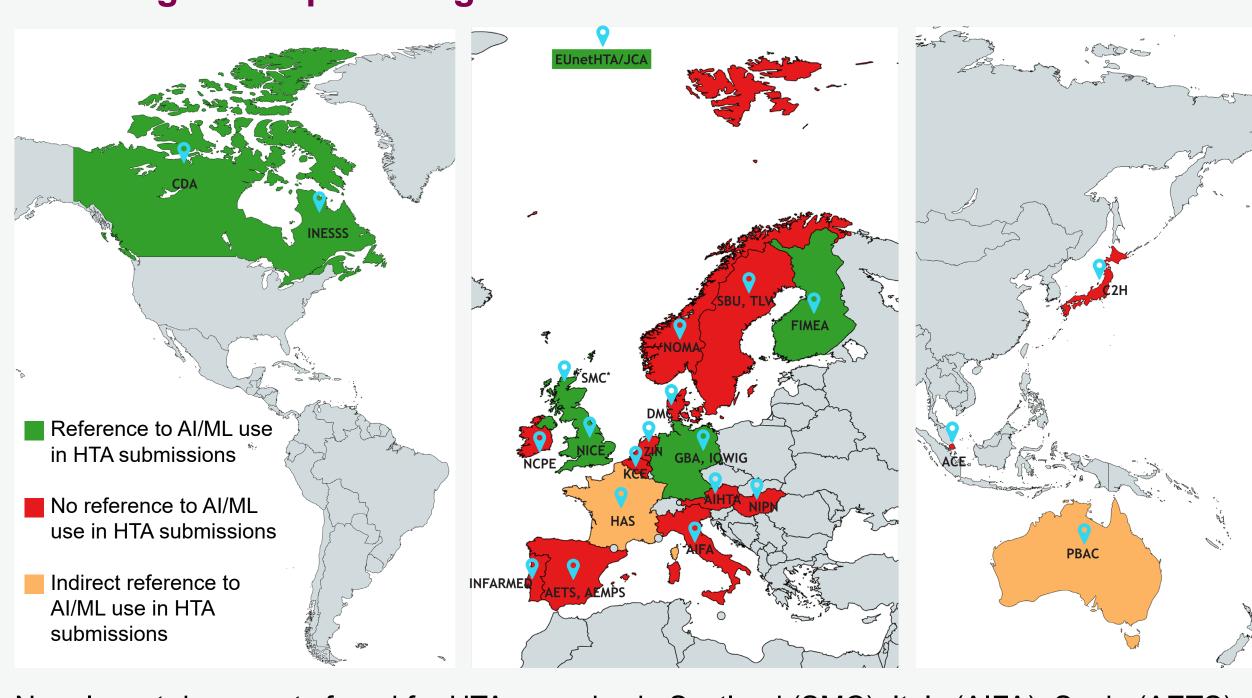
Opinion in 2021 allowed the use of real-world perinatal data for AI/ML analysis¹²

Nederland (ZIN)

Report indicated efforts to address RWE issues related to AI/ML both nationally and in Europe, including organizing forums and publishing updates¹⁸

Health Economic Modelling

NICE


Position statement notes Al's role in model development, including conceptualization, parameter estimation, and validation. LLMs can aid in replicating and cross-validating economic models⁵

NICE HTA Lab is exploring generative AI for economic modeling, from development to validation⁷

Indirect Treatment Comparison

Guidelines outlined that a wide range of statistical models, from logistic regression to ML models can be used in calculating propensity scores, used to perform indirect comparisons¹⁴

HTA agencies providing references to use of Al/ML in submissions

No relevant documents found for HTA agencies in Scotland (SMC), Italy (AIFA), Spain (AETS), Sweden (SBU, TLV), Norway (NOMA), Denmark (DMC), Singapore (ACE), and Japan (C2H)

Table 1. Performance metrics of automated publication screening tool from INESSS²²

Strategy type	Abstract Screening			Full-Text Screening		
	Basic strategy	Sensitive strategy	Ranking strategy	Basic strategy	Sensitive strategy	Ranking strategy
Sensitivity	92.3%	99.0%	100%	61.4%	92.4%	86.9%
Specificity	80.4%	55.1%	57.6%	82.6%	57.5%	60.6%

AI/ML Use and Human Involvement

 NICE advocates a "human-in-the-loop" AI model, emphasizing that AI should augment, not replace, human involvement to maintain trust in decision-making⁵

Strengths/Limitations

- Strengths: Recency, adherence to standard literature review methods (adapted for targeted review), and practical insights for HTA submissions, particularly in aligning with NICE guidance
- Limitations: Limited evidence base due to Al's emerging role in HTA and reliance on publicly available documents, highlighting the need for future studies incorporating stakeholder input

Conclusions

- •Al integration in HTA submissions is evolving but remains inconsistent. NICE is the only agency with a clear policy/position statement with implementation strategies for AI. While other agencies acknowledge AI's role, formalized guidance remains limited
- Our findings highlight a growing interest in Al's potential across literature reviews, RWE, and economic modeling, yet standardization and regulatory harmonization remain as key challenges
- Increased collaboration among HTA bodies, industry, and academia can clarify acceptable HTA submission methods, enhance existing methods, and facilitate sharing of best practices

References

- 1. Fleurence R, et al. *Value Health* 2025;28(2):175-183. doi: 10.1016/j.jval.2024.10.3846 Zemplényi A, et al. Front Public Health 2023:11:1088121. doi: 10.3389/fpubh.2023.1088121

3. Joanna Briggs Institute. JBI Manual for Evidence Synthesis. 10.2.4 Inclusion criteria. 2024. Accessed 2024-12-20

- 4. NICE. Developing NICE guidelines: the manual, 2024; https://www.nice.org.uk/process/pmg20/resources/developing-10.20 nice-guidelines-the-manual-pdf-72286708700869. Accessed 2024-12-20 5. NICE. Use of AI in evidence generation: NICE position statement, 2024; https://www.nice.org.uk/about/what-we-
- do/our-research-work/use-of-ai-in-evidence-generation--nice-position-statement. Accessed 2024-12-20 NICE. Statement of intent for artificial intelligence (AI). 2024; https://www.nice.org.uk/corporate/ecd12/resources/nice statement-of-intent-for-artificial-intelligence-ai-pdf-40464270623941. Accessed 2024-12-20

7. NICE. HTA projects. 2025; https://www.nice.org.uk/about/what-we-do/our-research-work/hta-lab-projects#ai. Accessed

- 8. CDA-AMC. Guidance for Reporting Real-World Evidence. 2023; https://www.cdaamc.ca/sites/default/files/RWE/MG0020/MG0020-RWE-Guidance-Report-Secured.pdf. Accessed 2024-12-20
- 9. CDA-AMC. Guidance for Reporting Real-World Evidence: Response to Stakeholder Feedback. 2023; https://www.cdaamc.ca/sites/default/files/RWE/MG0020/MG0020-Response-Document.pdf. Accessed 2024-12-20
- <u>amc.ca/sites/default/files/pdf/eh0070_overview_clinical_applications_of_Al.pdf</u>. Evidence Synthesis. 2024; https://canjhealthtechnol.ca/index.php/cjht/article/view/Al0001/Al0001. Accessed 2024-12-20 11. CDA-AMC. Development of an Evaluation Instrument on Artificial Intelligence Search Tools for Evidence Synthesis
- 2024; https://canjhealthtechnol.ca/index.php/cjht/article/view/AI0001/AI0001. Accessed 2024-12-20 12. GBA, des Gemeinsamen Bundesausschusses gemäß 8. Kapitel 1. Abschnitt 🖇 8 Absatz 1 Verfahrensordnung (VerfO):Entscheidung über die Gewährung der sekundären Datennutzung. 2021; Uni-Koeln.pdf Accessed 2024-12-20

<u>d8ad7748578f_en?filename=hta_methodological-guideline_direct-indirect-comparisons_en.pdf</u>. Accessed 2024-12-20

- 13. IQWiG. General Methods^a Version 7.0, 2023; https://www.iqwig.de/methoden/general-methods-version-7-0.pdf. 14. JCA. Methodological Guideline for Quantitative Evidence Synthesis: Direct and Indirect Comparisons 2024; https://health.ec.europa.eu/document/download/4ec8288e-6d15-49c5-a490
- 15. EUnetHTA. Process of information retrieval for systematic reviews and health technology assessments on clinical effectiveness. 2019; https://www.eunethta.eu/wpcontent/uploads/2020/01/EUnetHTA Guideline Information Retrieval v2-0.pdf. Accessed 2024-12-20
- 16. HAS. Choices in methods for economic evaluation. 2020; https://www.has-sante.fr/upload/docs/application/pdf/2020 11/methodological_guidance_2020_-choices_in_methods_for_economic_evaluation.pdf. Accessed 2024-12-20 17. PBAC, Guidelines for preparing a submission to the Pharmaceutical Benefits Advisory Committee. 2016 https://pbac.pbs.gov.au/content/information/files/pbac-guidelines-version-5.pdf. Accessed 2024-12-20
- 18. FIMEA. Supporting innovation and development of infrastructure. 2023; https://fimea.fi/en/supporting-innovation-and development-of-infrastructure. Accessed 2024-12-20 19. Arora P et. al. *J Comp Eff Res* 2024;14(1):e240212. doi: 10.57264/cer-2024-0212 20. CDA-AMC, Development of an Evaluation Instrument on Artificial Intelligence Search Tools for Evidence Synthesis.

2024; https://canjhealthtechnol.ca/index.php/cjht/article/view/AI0001/AI0001. Accessed 2024-12-20

21. Sood M, et al. *medRxiv* 2022. doi: 10.1101/2022.06.13.22276242 22. INESSS, Développement et évaluation d'un outil logiciel basé sur GPT-4 pour l'aide au tri de documents dans le cadre de revues de la littérature : une preuve de concept 2024; https://www.inesss.qc.ca/fileadmin/doc/INESSS/Demarche/INESSS_Outil_tri_GPT_4_VF.pdf. Accessed 2024-12-20

HTA Agencies: Agency for Care Effectiveness (ACE); Agencia de Evaluación de Tecnologías Sanitarias (AETS); Spanish Agency of Medicines and Medical Products (AEMPS); Agenzia Italiana del Fármaco (AIFA); Austrian Institute for Health Technology Assessment (AIHTA); Canada's Drug Agency (CDA); Center for Outcomes Research and Economic Evaluation for Health (C2H); Danish Medicines Council (DMC); European Network for Health Technology Assessment (EUnetHTA); Finnish Medicines Agency (FIMEA); Gemeinsamer Bundesausschuss (GBA); Haute Autorité de Santé (HAS); Belgian Health Care Knowledge Centre (KCE); National Institute for Excellence in Health and Social Services (INESSS); National Authority of Medicines and Health Products (INFARMED); Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen (IQWiG); National Centre for Pharmacoeconomics (NCPE); National Institute for Health and Care Excellence (NICE); National Institute of Pharmacy and Nutrition (NIPN); Norwegian Medical Products Agency (NOMA); Pharmaceutical Benefits Advisory Committee (PBAC); Swedish Agency for Health Technology Assessment and Assessment of Social Services (SBU)

Scottish Medicines Consortium (SMC); Dental and Pharmaceutical Benefits Agency (TLV); Zorginstituu

Acknowledgements

This study was conducted by Evidinno Outcomes Research Inc., funded by AstraZeneca

Disclosures

Eon Ting, Matthew Badin, Thomas Haugli-Stephens, and Johanna Jacob are employees and/or shareholders of AstraZeneca. Nishu Gaind, Kimberly Hofer, Mir-Masoud Pourrahmat, Luka Ivkovic, and Mir Sohail Fazeli are employed by Evidinno Outcomes Research Inc.