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oversight from agencies like the FDA and EMA. On aver-
age, it takes 10–13 years to bring a drug to market, with 
only 1 in 10,000 candidates gaining approval [1–3]. Devel-
opment costs range from $1–2.3 billion [3–5], contributing 
to a decline in return-on-investment from 10.1% in 2010 to 
1.8% in 2019 [5]. These challenges have driven efforts to 
streamline molecule selection and improve trial efficiency.

Randomized clinical trials (RCTs) remain the gold stan-
dard for evaluating safety and efficacy but have limitations. 
Phase 3 trials, despite larger samples, still struggle with diver-
sity [6], underrepresentation of high-risk patients [7], and 
potential overestimation of effectiveness due to controlled 
conditions [8]. Small sample sizes hinder subgroup analyses 
and rare adverse event detection. Randomization does not 
guarantee perfect covariate balance [9, 10], and differential 
loss to follow-up may introduce biases [11]. Additionally, 
reliance on surrogate endpoints, such as progression free 
survival over overall survival, is common—70% of recent 
FDA oncology approvals used non-overall survival end-
points—raising concerns about real-world relevance [12]. 

Introduction

Drug development is complex, time-intensive, and costly, 
requiring rigorous testing to ensure efficacy and safety. 
The process begins with identifying promising molecules, 
followed by extensive clinical trials and strict regulatory 
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Abstract
The current paradigm of clinical drug development, which predominantly relies on traditional randomized controlled trials 
(RCTs), is increasingly challenged by inefficiencies, escalating costs, and limited generalizability. Concurrent advance-
ments in biomedical research, big data analytics, and artificial intelligence have allowed for the integration of real-world 
data (RWD) with causal machine learning (CML) techniques to address some of these limitations. This manuscript reviews 
the emerging role of RWD/CML in enhancing clinical research and drug development programs. By leveraging diverse 
data sources — including electronic health records, wearable devices, and patient registries — CML methods facilitate 
robust drug effect estimation, enable precise identification of responders, and support adaptive trial designs. Approaches 
such as advanced propensity score modelling, outcome regression, and Bayesian inference can help mitigate confounding 
and biases inherent in observational data, thereby strengthening the validity of causal inference. However, these innova-
tive methodologies also face significant challenges related to data quality, computational scalability, and the absence of 
standardized validation protocols. Furthermore, ethical and regulatory concerns regarding model transparency and valid-
ity, data privacy, and possible algorithmic biases stress the importance of multidisciplinary collaboration and rigorous 
oversight. Our analysis underscores that while RWD/CML integration can enhance clinical development programs by 
generating more comprehensive evidence and accelerating drug innovation, its successful adoption depends on overcom-
ing technical, operational, and scientific hurdles while maintaining a transparent approach with regulatory agencies.
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Similar challenges apply to assessing long-term side effects 
and competing risks in patients with comorbidities [13]. 

To address the limitations of conventional trials, research-
ers have explored strategies such as decentralized clinical 
trials, master protocols (basket, umbrella, and platform tri-
als), adaptive designs, patient-centred trials, and the integra-
tion of real-world data (RWD) to complement trials for drug 
development. For instance, RWD captures patient journeys, 
disease progression, and treatment responses, offering valu-
able insights into drug efficacy and safety beyond controlled 
trial settings [14]. It encompasses diverse sources, includ-
ing electronic health records (EHRs), insurance claims, and 
structured patient registries—where data follow predefined 
protocols but without randomized interventions [15–17]. 
Furthermore, by generating real-world evidence (RWE), 
RWD plays a critical role in optimizing trial design, improv-
ing recruitment efficiency, optimal timepoints for the out-
comes and identifying treatment-effect modifiers to support 
personalized medicine [18]. 

Despite its advantages, RWD presents challenges due to 
its observational nature and lack of randomization, making 
it prone to confounding and different types of biases [19]. 
Addressing these challenges requires advanced analyti-
cal methods that account for real-world complexities and 
strengthen causal validity. Causal inference has evolved 
from its classical epidemiological foundation—rooted in 
confounding factors, biases and randomized trials [20, 
21]—to an essential tool in modern machine learning (ML), 
where prediction alone is insufficient for decision-making 
[22]. Causal machine learning (CML), which integrates 
ML algorithms with causal inference principles to estimate 
treatment effects and counterfactual outcomes from com-
plex, high-dimensional data [22, 23], plays a crucial role 
in overcoming RWD limitations by mitigating confounding 
and improving inference. CML has emerged as a promis-
ing approach for drug development. Unlike traditional ML, 
which excels at pattern recognition, CML aims to determine 
how interventions influence outcomes, distinguishing true 
cause-and-effect relationships from correlations, a critical 
factor for evidence-based decision-making [23, 24]. 

A key application of RWD/CML is estimating causal 
treatment effects in real-world settings by comparing 
treated and untreated patients. Propensity scores, tradition-
ally estimated using logistic regression, have been widely 
used to mitigate bias through inverse probability weight-
ing, matching, or covariate adjustment [25]. However, 
ML methods such as boosting, tree-based models, and 
neural networks regularly outperform logistic regression 
by better handling non-linearity and complex interactions 
[26–29]. More recently, deep representational learning has 
improved propensity score estimation in high-dimensional 
data [30, 31], while prognostic models enhance matching 

strategies, as described by Zhang et al. 2022. [32] Beyond 
propensity-based approaches, outcome regression models 
(e.g., G-computation) [33] directly adjust for confound-
ing, leveraging RWD’s large sample sizes. Advanced tech-
niques like targeted maximum likelihood estimation [34] 
and doubly robust inference [35] enhance causal estimation 
by combining outcome and propensity models, with ML 
improving predictive accuracy [36, 37]. Parallel to epidemi-
ology, econometrics—where randomized experiments are 
often infeasible—leverages tools like instrumental variable 
analysis and structural equations [38], recently equipping 
them with deep learning and kernel-based methods [39–41]. 
Additionally, graphical modeling, as proposed by Pearl 
[42, 43], explicitly represents causal assumptions to refine 
treatment effect estimation [44, 45]. Pearl’s “do-calculus” 
aligns with potential outcomes in most cases but diverges in 
specific contexts, leading to ongoing academic debate [46]. 
Predictive modeling for clinical trial emulation has been 
validated by comparing its results to actual RCT outcomes, 
demonstrating its reliability [47]. 

This article introduces the transformative potential of 
applying CML to RWD in the context of drug development. 
Rather than focusing on a single methodological innovation, 
it provides a comprehensive overview of the key capabilities 
and outputs enabled by RWD/CML, emphasizing how these 
can complement and extend traditional clinical research by 
providing richer and more actionable insights into treatment 
effects. To ground this discussion, we present a series of use 
cases that illustrate the added value of integrating RWD/
CML data with RCT data. While the promise of RWD/CML 
is considerable, it also brings technical, scientific, ethical, 
and regulatory challenges. The final section of the article 
critically evaluates these limitations and offers pragmatic 
recommendations aligned with current regulatory perspec-
tives. By framing this integration within evolving scientific 
and regulatory paradigms, we aim to provide readers with a 
conceptual foundation for understanding the opportunities 
and challenges of this emerging field.

Presentation of Selected Use Cases to Illustrate How 
CML on RWD Complement Traditional Clinical Trials 
Outputs and Enhance Clinical Development

In this section we illustrate how the integration of clinical 
trial data with RWD and CML can generate a more com-
prehensive and robust evidence base on drug effects. The 
series of cases illustrate how artificial intelligence can 
reveal clinically meaningful insights, for instance identify-
ing patient subgroups or detecting delayed outcomes. These 
cases showcase a range of high-value outputs relevant to 
drug development, including trial emulation, increased 
efficiency in indication expansion, evaluation of treatment 
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transportability, optimization of dosing strategies, and the 
design of innovative adaptive clinical trials. In certain con-
texts, RWD/CML can also facilitate the development of 
external control arms (ECAs), offering a rigorous alterna-
tive when traditional randomized controls are not feasible. 
Each use case has been chosen to highlight distinct contri-
butions of RWD/CML across various domains—such as 
novel study designs, enhanced decision-making processes, 
or the generation of new evidence that supports multiple 
stakeholders. To emphasize the independent value of each 
contribution, the cases are presented as standalone examples 
without attempting to establish direct connections between 
them.

Identifying Subgroups and Refining Treatment Responses

A key advantage of RWD/CML is their ability to identify 
patient subgroups that demonstrate varying responses to a 
specific treatment. Predictors of treatment response may 
include for instance biomarkers, disease severity indica-
tors, and longitudinal health status trends [48]. RWD offers 
a particularly valuable source of such information, often 
capturing a more comprehensive view of patient health than 
RCTs. By integrating these findings into predictive mod-
els, future trials can be better designed to target the most 
responsive patient populations, improving overall efficiency 
and effectiveness. This framework enhances RWD applica-
tions for clinical and regulatory decision-making and holds 
promise in advancing precision or personalized medicine 
by identifying patient subgroups that benefit most from 
specific treatments. Bertsimas et al. (2024) [49] introduced 
the R.O.A.D. framework, a method for clinical trial emula-
tion using observational data while addressing confounding 
bias. Applied to 779 colorectal liver metastases patients, it 
accurately matched the JCOG0603 trial’s 5-year recurrence-
free survival (35% vs. 34%). The approach uses prognostic 
matching and cost-sensitive counterfactual models to cor-
rect biases and identify subgroups with 95% concordance 
in treatment response. Traditionally, identification of patient 
subgroups requires testing for an interaction effect between 
treatment and patient attributes, which can reduce the power 
of the trial and may require multiple testing corrections [50]. 
ML models, in contrast, excel at scanning large datasets to 
detect complex interactions and patterns, making them par-
ticularly well-suited for discovering subpopulations with 
distinct responses [51–54]. In the RWD/CML approach it is 
also possible to deploy the outcome model’s predictions as a 
“digital biomarker,” effectively stratifying patients based on 
their predicted response and optimizing trial design accord-
ingly [55]. 

Combining Information from RCT and RWD for a 
Comprehensive Drug Effect Assessment

Beyond patient stratification, RWD/CML enhances the inte-
gration of multiple data sources, maximizing the informa-
tion derived from both RCTs and RWE. For instance, while 
RCTs provide robust short-term efficacy and safety data 
under controlled conditions, they often lack long-term fol-
low-up, which can be supplemented by observational data 
from RWD sources. Such an approach is particularly use-
ful for evaluating long-term treatment effects, identifying 
delayed adverse events, and assessing the sustainability of a 
drug’s benefits in real-life settings. Additionally, ECAs that 
incorporate both RCT and RWD data provide an alterna-
tive to traditional randomized comparisons. However, these 
approaches introduce unique biases, due to the absence of 
randomization and systematic differences between trial and 
real-world populations [56]. Bayesian power priors, which 
assign different weights to diverse evidence sources, offer 
a method for addressing these biases [57]. Other similar 
Bayesian methodologies have also been developed to inte-
grate historical evidence into ongoing trials, even in cases 
where only aggregate data are available, such as in network 
meta-analyses [58], synthetic evidence approaches [58], or 
advanced Bayesian frameworks [59, 60]. 

Use of RWD/CML for Indication Expansion

Additionally, drugs approved for one condition often exhibit 
beneficial effects in other indications, and ML-assisted real-
world analyses can provide early signals of such potential 
cross-indications [61, 62]. CML techniques (e.g., targeted 
maximum likelihood estimation, double machine learning, 
or Bayesian causal models) generate estimates of treatment 
effects while addressing confounding or selection biases. 
This can be achieved through spontaneous use tracking, 
assessment of incidental risk reduction in secondary con-
ditions, or more systematic deep phenotyping approaches 
that integrate molecular knowledge graphs with RWD. 
For instance, Gao et al. (2022) [63] present KG-Predict, a 
knowledge graph-based computational framework for drug 
repurposing which enhances predictive accuracy drug dis-
covery and repositioning.

RWD/CML for Estimating Transportability of Trial Results 
Across Populations

Another critical challenge in clinical research is the trans-
portability of treatment effect estimates across different 
populations. Treatment effects identified in one cohort 
may not directly generalize to another due to differences 
in patient characteristics, disease prevalence, or healthcare 
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development programs incorporate adaptive strategies such 
as interim futility analyses [72] and dynamic enrolment 
adjustments [73]. Conceptually, the entire drug develop-
ment process can be viewed as a sequential learning experi-
ment, where each trial phase informs the next. RWD/CML 
plays a crucial role in this iterative process, allowing proto-
cols to be refined in real-time based on accumulating data. 
In statistical and CML research, adaptive experiments have 
been formalized through frameworks such as multi-armed 
bandits [74] and Markov decision processes [75], which 
have gained widespread application in multiple domains, 
including clinical trials [76–78]. These approaches enable 
treatment allocation or enrolment criteria to be dynamically 
modified as new evidence emerges. In dose-finding phase 
1 studies, for instance, ML-driven adaptive methodologies 
have been successfully applied to continuously reassess 
safety and efficacy, optimizing dosing regimens in real-time 
[79]. Hüyük et al. 2024 [80], demonstrated how ML-based 
optimization can refine trial decision-making, continuously 
evaluating whether a study should proceed, be adjusted, or 
be terminated early based on efficacy trends. Bayesian meth-
odologies further support these dynamic decision processes, 
with growing regulatory acceptance of Bayesian designs in 
adaptive clinical trials [81–83], including applications in 
ECAs [84, 85]. In short, CML brings flexibility, precision, 
and learning capacity to adaptive trial design, turning RWD 
into a strategic resource for guiding and refining trials far 
beyond classical methods.

RWD/CML Generating External and Synthetic Control Arms

RWD/CML can play a key role in the generation of ECAs 
as valid comparators of single arm trials [86, 87]. The recent 
publication of guidelines by regulatory agencies on ECAs 
and synthetic control arms (SCAs) is an official recogni-
tion, which will likely facilitate their future use in clinical 
research, especially in oncology [88]. By leveraging data 
from real-world patient populations as a comparator group, 
ECAs or SCAs allow single-arm trials to generate compara-
tive effectiveness estimates, particularly useful for rare dis-
eases where randomization may be infeasible [18, 86, 89]. 
CML in this context plays a critical role to mitigate pos-
sible selection biases and control confounding factors [90, 
91]. These controls can also be used internally for decision-
making, enabling pharmaceutical companies to retrospec-
tively enrich trial results with additional comparator data or 
to simulate potential future trial outcomes. The use of ECAs 
helps optimize go/no-go decisions, fine-tune upcoming tri-
als, and refine statistical power calculations [86]. 

settings. Adjusting for these “population shifts” is essen-
tial to ensure that findings from one study setting remain 
relevant elsewhere [64, 65]. In ML research, this issue is 
known as “concept drift” or “dataset shift,” and a rich body 
of evidence exists on methodologies to mitigate its impact 
[66]. Approaches such as modified ensemble learning have 
been specifically developed for clinical datasets, enhancing 
the robustness of predictive models when applied across 
diverse populations [67, 69]. One notable application of 
these techniques has been in dosing prediction, where ML-
based models have been adapted to account for changing 
patient profiles and evolving clinical practices [68]. 

RWD/CML for Optimizing Dosage Determination

Finally, another crucial contribution of RWD/CML in 
advancing clinical trials consists in enhancing dosage opti-
mization for improved efficacy and safety. Dosing deci-
sions are traditionally based on phase 1 clinical data and 
preclinical models, which may lack the precision needed for 
real-world patient populations. By integrating real-world 
pharmacokinetic and pharmacodynamic data with predic-
tive models, RWD-driven dose optimization strategies can 
improve the safety and efficacy of drug treatments. In cer-
tain therapeutic areas, natural variation in drug exposure 
post-approval can be analysed to refine dosing strategies 
and ensure optimal therapeutic effects while minimizing 
adverse events [69]. 

RWD/CML for Planning More Efficient Clinical Trials

The use of RWD is also central to describing natural history 
and prognostic research, which provides essential context 
for drug development. These studies offer insights into dis-
ease prevalence, severity, progression, and unmet medical 
needs. CML information is particularly valuable for refining 
trial eligibility criteria, identifying potential external con-
trols, and guiding future modelling efforts. The ability to 
track real-world disease trajectories enables a deeper under-
standing of risk factors [70] and allows for the modelling 
of drug effects in complex clinical scenarios. Additionally, 
RWD/CML facilitates the study of competing risks, poly-
pharmacy effects, and drug-drug interactions—critical con-
siderations that are often underrepresented in RCTs, where 
patients typically have fewer comorbidities and concomi-
tant medications [71]. 

RWD/CML for Designing Efficient Adaptive Trial and 
Sequential Learning

Adaptive clinical trial designs represent another major 
innovation facilitated by RWD/CML. Increasingly, clinical 
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significant computational resources to process large, high-
dimensional datasets typical of RWD. Organizations must 
invest in the infrastructure necessary to process and analyse 
RWD. One important concern regarding RWD/CML is the 
quality of the data used as RWD databases often suffer from 
missing data, inconsistent or incorrect coding, measure-
ment errors, incomplete longitudinal follow-up, and biased 
patient selection. These limitations can undermine model 
validity and raise significant regulatory concerns. Currently, 
best practices emphasize a thorough documentation of 
source databases before their use, a resource-intensive pro-
cess that requires transparent communication [96–98]. The 
development of standardized guidelines regarding technical 
equipment and operation is necessary to guide organizations 
that wish to enter this new discipline.

Beyond technical challenges, the scientific limitations 
of using RWD/CML stem from gaps in expertise and the 
absence of universally accepted best practices. The success-
ful application of CML requires interdisciplinary knowledge 
that spans epidemiology, statistics, AI, and domain-specific 
expertise in healthcare or life sciences. Loftus (2024) [99] 
argues that progress in causal modeling has been hindered 
by scientific perfectionism and the lack of a human-centric 
approach. Hernán (2018) [100] emphasizes that causal anal-
yses typically require not only good data and algorithms but 
also domain expert knowledge. Unlike traditional statistical 
methods that have well-defined guidelines for causal infer-
ence, CML is still evolving, and consensus on best prac-
tices for using these methods with RWD is still evolving. 
This gap in knowledge increases the risk of improper model 
selection, overfitting, and misattribution of causal effects. 
One important takeaway from this situation is the critical 
importance of rigorous validation of the CML generated 
models to ensure reliability, accuracy, and scientific integ-
rity [101]. Baweja et al. 2023 [102] highlighted the chal-
lenges data scientists face in keeping up with the fast-paced 
advancements in ML, suggesting that human factors meth-
ods could be applied to address these difficulties. Address-
ing these scientific barriers requires comprehensive training 
programs, the development of standardized guidelines, and 
fostering collaboration across disciplines to build the nec-
essary expertise for advancing CML applications in real-
world settings.

Regulatory Perspective on Developing RWD/CML

The regulatory review of AI-generated results presents a 
significant factor shaping the path forward for this emerg-
ing technology. Both the FDA and EMA have been actively 
addressing the integration of AI and RWD in drug develop-
ment by progressively developing frameworks and guide-
lines to balance innovation with regulatory rigor. The FDA 

Using RWD/CML for Target Trial Emulation

Target trial emulation (TTE) is another emerging applica-
tion of RWD/CML that transforms clinical trials, using a 
combined analysis of RWD and RCT data. TTE allows 
researchers to replicate or complement RCT results with 
RWD, while maintaining strict comparability in terms of 
inclusion/exclusion criteria and outcome definitions. The 
comparator arm can be simulated using real-world patients, 
whereas advanced modelling techniques can help model 
the treatment arm. This approach has proven valuable in 
improving alignment between RCT and real-world find-
ings, reducing discrepancies caused by differences in study 
design [92]. At the same time, RWD can be leveraged to 
explore alternative hypotheses beyond the original scope of 
an RCT, therefore complementing traditional trial results. 
For instance to evaluate long-term outcomes, assess treat-
ment effects in broader populations, or study rare subgroups 
where RCT evidence may be lacking [93]. The ability to 
emulate future trials also enhances clinical development 
by supporting interim decision-making, such as inclusion/
exclusion refinements [94] and futility assessments [95]. 

Challenges and Recommendations Regarding the 
Use of RWD/CML for Drug Development

The integration of AI into drug development is a ground-
breaking advancement, with CML emerging as a powerful 
tool driving progress. The promise of RWD/CML quickly 
captured the attention of the pharmaceutical industry pri-
marily due to their potential to address the inherent limita-
tions of traditional clinical trials. However, the rapid rise 
of RWD/CML has been met with caution from regulatory 
agencies like the FDA and EMA. Additionally, the wide-
spread adoption of RWD/CML faces additional technical 
and scientific challenges, such as the RWD quality and 
the complexity of algorithms requiring sophisticated pro-
gramming. Furthermore, ethical concerns regarding data 
privacy, bias, and transparency continue to raise important 
questions about the responsible use of these technologies in 
drug development. The next section explores the technical, 
operational, and scientific challenges, followed by a discus-
sion on the regulatory perspective of RWD/CML, as well as 
ethical and sociocultural considerations.

Technical/Operational and Scientific Challenges Faced by 
RWD/CML

CML applied to RWD faces several technical limitations 
that stem from both the nature of the data and the complex-
ity of the models used. A major challenge is scalability and 
computational efficiency, as some CML methods require 
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further complicating the ethical landscape [108]. Establish-
ing robust ethical frameworks is crucial to ensuring that AI-
driven healthcare solutions uphold ethical principles while 
enhancing patient care [109]. 

A final critical barrier to AI adoption in drug development 
is sociocultural, driven by skepticism among healthcare 
professionals and patients toward AI-generated recom-
mendations. Concerns over the fairness, transparency, and 
potential biases of algorithmic decisions can foster public 
reluctance and mistrust, slowing widespread acceptance. 
Addressing these challenges requires clear communica-
tion, robust accountability measures, and proactive efforts 
to ensure diverse representation in research. Moreover, 
since RWD encompasses individuals from diverse cultural, 
socioeconomic, and healthcare backgrounds, CML models 
must be designed to account for these differences, ensur-
ing that treatment recommendations are both equitable and 
culturally relevant. Building trust in AI-driven applications 
depends on ongoing collaboration with healthcare provid-
ers, active patient engagement, and a steadfast commitment 
to transparency.

Conclusions

This paper has highlighted the rapid development of CML 
and RWD as complementary tools in drug development, 
addressing limitations of traditional clinical trials. CML 
enables unbiased drug effect estimation, responder subgroup 
identification, and long-term efficacy and safety assessment. 
It also supports clinical trial adaptation and external control 
generation. However, widespread adoption is hindered by 
the limited quality of some source-databases, scarce rel-
evant technical expertise, lack of standardized guidelines, 
and universally accepted best practices. Overcoming these 
barriers requires multidisciplinary collaboration to establish 
rigorous methodologies, develop operational guidelines, 
and integrate these approaches into widely used software 
packages. Regulatory agencies are progressively providing 
guidance and structured initiatives to evaluate these tech-
nologies responsibly. Achieving broader acceptance and 
trust, however, requires transparent communication with 
stakeholders regarding how these models are developed, 
tested, and applied. These methods should only be imple-
mented by institutions with the necessary infrastructure and 
expertise to ensure methodological rigor, transparency, and 
reproducibility. By fostering stakeholder engagement and 
establishing rigorous, evidence-based implementation strat-
egies, these innovative approaches can complement RCTs 
and accelerate the future of drug development programs and 
regulatory science.

first acknowledged the utility of RWE/RWD to comple-
ment clinical trials in 2017, particularly for complement-
ing clinical trials in specialized contexts such as oncology 
[98]. However, the use of CML on RWD introduces regu-
latory concerns, particularly regarding the transparency of 
AI-driven models. Many CML models function as “black 
boxes,” offering little insight into their internal decision-
making processes. This opacity raises concerns about the 
reproducibility of scientific findings and the trustworthiness 
of AI-generated evidence, especially in regulatory decision-
making, where understanding the rationale behind conclu-
sions is crucial [103]. Recognizing these challenges, the 
FDA released its first set of recommendations on AI in drug 
development in January 2025. This guidance introduced a 
risk-based framework for sponsors to assess and establish 
the credibility of AI models within defined contexts of use, 
outlining necessary steps to ensure model reliability and 
applicability [104]. In Europe, the EMA published a reflec-
tion paper on AI in drug development in September 2024, 
addressing key issues such as data quality, model validation, 
and the ethical implications of AI deployment in clinical 
research. This document underscores the agency’s commit-
ment to ensuring that AI applications are both scientifically 
sound and ethically justified [105]. These regulatory efforts 
reflect a broader commitment to balancing patient safety, 
product efficacy, and innovation in the rapidly evolving field 
of AI-driven drug development. They also underscore the 
responsibility on the research teams to develop high-quality 
models that are transparent and can be reproducible—an 
effort that, in practice, requires addressing the challenges 
outlined in section “Technical/Operational and Scientific 
Challenges”.

Ethical Challenges in RWD/CML Integration

The integration of RWD and CML into drug development 
also raises significant ethical concerns, particularly regard-
ing privacy, consent, and data ownership [106, 107]. Since 
RWD is often derived from EHRs, insurance claims, and 
other sensitive sources, compliance with privacy regula-
tions, such as the Health Insurance Portability and Account-
ability Act (HIPAA) in the U.S. and the General Data 
Protection Regulation (GDPR) in Europe, is essential to 
protect patient confidentiality. However, the use of large-
scale datasets required for AI and CML modelling, along 
with extensive exploratory analyses of the variable relation-
ships through causal networks, increases the risk of re-iden-
tifying anonymized patient records, potentially leading to 
privacy breaches [108]. Additionally, ambiguities surround-
ing data ownership—whether it belongs to patients, health-
care institutions, or third-party entities—can lead to disputes 
over access, usage rights, and potential commercialization, 
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