Clinical and Economic Impact of Maternal Vaccination with Bivalent Respiratory Syncytial Virus Prefusion F (RSVpreF) Vaccine in Peru

Rafael Bolanos¹, Marianella Perata¹, Robyn Kendall², Luka Ivkovic², Maninder Anand², Gopika Balasubramanian², Rengina Kefalogianni³, <u>Diana Mendes</u>^{3*}

1Pfizer Peru, Lima, Peru; ²Evidinno Outcomes Research Inc., Vancouver, BC, Canada; ³Pfizer, Tadworth, Surrey, UK; *diana.mendes@pfizer.com

OBJECTIVE

- Respiratory syncytial virus (RSV) infection is a leading cause of hospitalization for acute respiratory infections in infants.^{1,2}
- The bivalent RSVpreF vaccine is approved for use among pregnant individuals in Peru for the prevention of infant RSV illness.³
- This study estimated the clinical and economic impact of a year-round RSVpreF maternal vaccination program in Peru.

METHODS

Overview

- A cohort-based Markov model was used to project the clinical and economic outcomes of RSV infection among infants in Peru, with and without RSVpreF vaccination over a lifetime horizon.
- Clinical outcomes of interest were medically-attended RSV cases stratified by care setting (i.e., hospital [H], emergency department [ED], physician's office [PO]), deaths due to RSV (among hospitalized infants) in the first year of life, life years (LYs), and quality-adjusted life years (QALYs).
- Economic outcomes included direct medical care, indirect, and intervention costs (RSVpreF vaccine cost and administration cost).

Model Parameters

- The number of pregnant women (n = 417,409) and infants (n = 422,000) per year were obtained from the Peruvian Ministry of Health.⁴
- RSV-H and RSV-ED rates were derived using official data from the Peruvian Ministry of Health, National Health Superintendence, and Social Health Insurance. RSV-PO rates were assumed to be the same as RSV-ED rates, validated by clinical experts.
- Monthly distribution of RSV encounters per care setting was based on Ministry of Health data validated by Peruvian clinical experts.⁶
- General infant mortality and case fatality rates for hospitalized infants were obtained from the Peruvian Ministry of Health.^{7,8}
- Vaccine effectiveness was based on the MATISSE trial.⁹ A duration of 6 months of effectiveness was considered, with the effectiveness waning linearly to 0% by 9 months of age.
- An uptake rate of 50% was considered for the RSVpreF maternal vaccination, based on the uptake of maternal Tetanus, diphtheria, and pertussis (Tdap) vaccine in Peru.¹⁰ The vaccine administration window was assumed to be 32-36 weeks of gestation.¹¹
- All costs were reported in 2025 US dollars (US\$) and Peruvian Sol (S/). Direct costs of RSV-H, RSV-ED, and RSV-PO were estimated to be US\$3,022.00 (S/11,308.83), US\$141.00 (S/527.65), and US\$141.00 (S/527.65), respectively, based on Peruvian Ministry of Health data (RSV-PO cost was assumed to be same as ED cost). The cost of the maternal vaccine was assumed US\$49.00 (S/183.37), in line with the Pan American Health Organization (PAHO) list price for eligible countries. The administration cost of the vaccine was assumed to be US\$4.00 (S/14.97) based on information provided by local experts.
- Workforce participation rates and wage data for the calculation of indirect costs were obtained from Peruvian government sources. ^{15,16} Caregiver work loss days and travel costs per episode were sourced from published articles. ^{17,18,19}
- General population utility values for the Peruvian population (≥ 1 year of age) were estimated from published data. ²⁰ A utility estimate of 1.0 was assumed for infants without RSV.
- Published RSV-related disutility values were applied (RSV-H = 0.0157, RSV-ED = 0.0061, RSV-PO = 0.0061).²¹

Analyses

- For the base analysis, an annual discount rate of 3% was applied to both future costs and outcomes, and model time horizon of lifetime (up to 99 years) was considered.
- Scenario analyses tested alternative inputs/settings including different vaccine uptake rates, vaccine administration windows, and seasonal vaccination strategy.

RESULTS

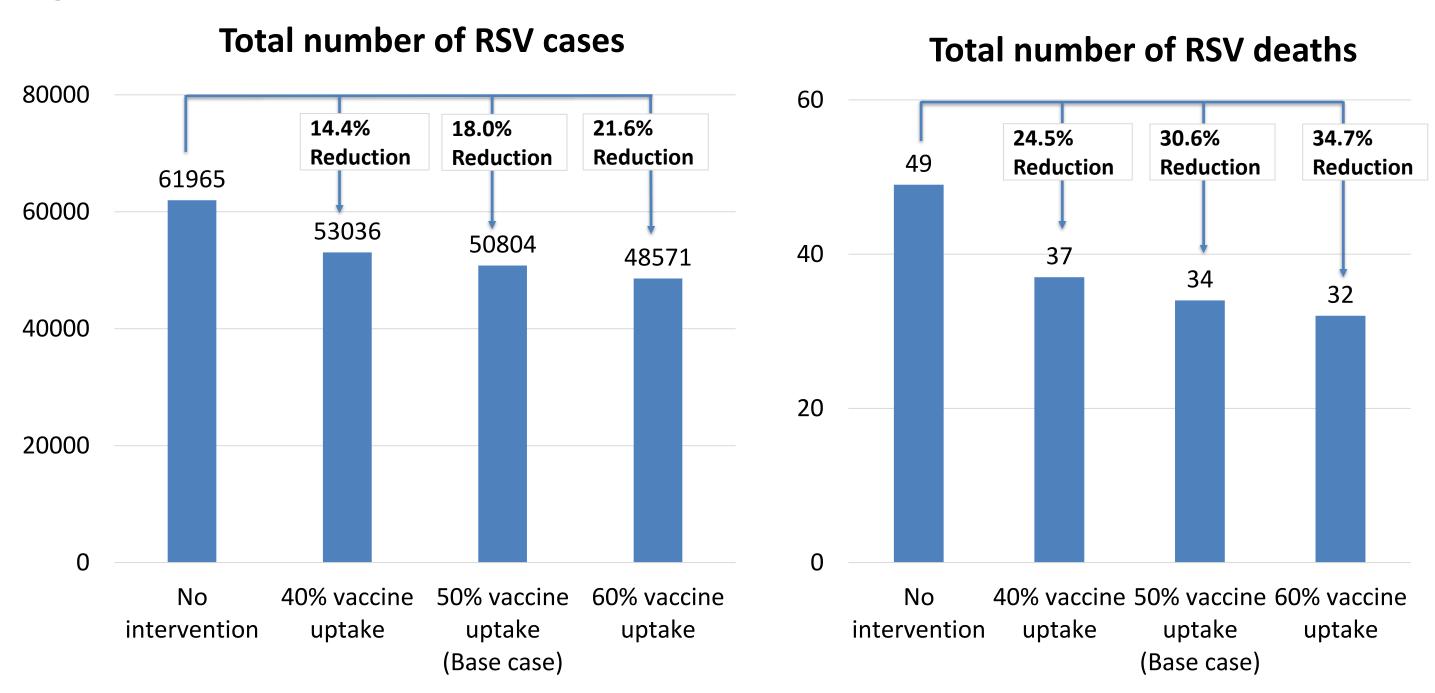

- Maternal RSVpreF vaccination was projected to prevent a total of 11,162 RSV cases and 14 RSV-related deaths among infants in the first year of life compared to no vaccination.
- Maternal RSVpreF vaccination would result in a savings of US\$6.91 million (S/25.85 million) in medical care costs coupled with a gain of 500 QALYs compared to no vaccination.
- Additionally, nearly US\$1 million (S/3.6 million) in indirect costs were estimated to be saved by RSVpreF versus no vaccination.
- Maternal vaccination with RSVpreF would be a cost-effective strategy *versus* no vaccination with the corresponding incremental cost effectiveness ratio (ICER) of US\$5,901 (S/22,082) to US\$7,830 (S/29,300) per QALY gained, under societal and healthcare perspectives, respectively, below the 1x gross domestic product (GDP) per capita in Peru US\$7,907(S/29,601) [**Table 1**].

Table 1: Base case analysis results

	Maternal RSV Vaccination	No Vaccination	Difference
Clinical outcomes			
No. of cases – RSV H	6,024	7,920	-1,897
No. of cases – RSV ED	22,418	27,063	-4,645
No. of cases – RSV PO	22,362	26,982	-4,620
No. of RSV-related deaths	34	49	-14
Life years (discounted)	12,835,662	12,835,225	437
QALYs (discounted)	12,196,006	12,195,506	500
Economic outcomes (in millions US\$ [S/])			
Medical care	23.92 [89.51]	30.83 [115.36]	-6.91 [-25.85]
Intervention costs	10.82 [40.50]	0	10.82 [40.50]
Total direct costs	34.74 [130.01]	30.83 [115.36]	3.91 [14.64]
Total indirect costs	3.52 [13.16]	4.48 [16.77]	-0.96 [-3.61]
Total costs (direct + indirect)	38.26 [143.17]	35.31 [132.13]	2.95 [11.04]
ICER, cost per QALY gained (US\$ [S/] / QALY)			
Healthcare perspective			7,830 [29,300]
Societal perspective			5,901 [22,082]

- All evaluated scenarios demonstrated the cost-effectiveness of RSVpreF maternal vaccination.
- Scenario analysis on uptake rates for maternal vaccination shown in **Figure 1** depict its expected public health impact on the burden of RSV infant cases, showing a substantial decrease in total RSV medically-attended cases and RSV-related deaths among infants with the increase of the maternal vaccine uptake.

Figure 1: Clinical outcomes across different maternal vaccine uptake levels

CONCLUSION

- A year-round maternal RSV vaccination (RSVpreF) program in Peru would be cost-effective from both the healthcare and societal perspectives.
- Maternal RSVpreF vaccination would substantially reduce the number of medically-attended RSV cases among infants, thereby alleviating the economic burden associated with RSV.

REFERENCES

1. CDC — About RSV. 2. Ciapponi A et al., Front Public Health. 2024;12:1377968. 3. DIGEMID. Consultation of the Health Registry of Pharmaceutical Products. 4. Ministry of Health (Ministerio de Salud) — CNV Online Board. 5. National Health Superintendence (Superintendencia Nacional de Salud). Hospital discharges from Health and Private Sectors (Egresos hospitalarios Sanidades y Privados). 6. Sistema de Información de Egresos y Emergencia [(SEEM]), SAIP - Solicitud SAIP 25-002044, Ministerio de Salud del Perú, unpublished data, 2025. 7. Ministry of Health - Registered Deaths. 8. Ministry of Health - Death Information System (SINADEF_Datos_Abiertos). 9. Kampmann B et al., N Engl J Med. 2023;388(16):1451-64. 10. Ministry of Health. Immunization Indicators (Indicadores de inmunizaciones) 2024. 11. Ministry of Health. Eficacia y seguridad de la vacuna contra el Virus Sincitial Respiratorio en gestantes de 32 a 36 semanas de gestación 2025. 12. Seguro Integral de Salud (SIS), Ministerio de Salud del Perú. Catálogo de precios DIGEMID (CATPREC) 2025. 13. Ministerio de Salud del Perú. Listado de procedimientos médicos y sanitarios contenidos en el Plan Esencial de Aseguramiento en Salud (PEAS). Resolución Ministerial Nº 539-2022-MINSA 2022. 14. Pan American Health Organization. PAHO Revolving Fund for Access to Vaccines Prices for the Calendar Year 2025. 15. National Institute of Statistics and Informatics, Peru. 16. Ministry of Labor and Employment Promotion, Peru. 17. Ochoa TJ et al., Am J Trop Med Hyg. 2014;91(5):1029-34. 18. Tinoco YO et al., Influenza Other Respir Viruses. 2016;10(4):301-9. 19. Jara JH et al., J Infect. 2019;79(2):108-14. 20. Augustovski F et al., Cost Eff. Resour. Alloc. 2023;21(1). 21. Roy LMC, Deriving health utility weights for infants with Respiratory Syncytial Virus (RSV).